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Abstract. In this work we introduce a novel weighted message-passing
algorithm based on the cavity method for estimating volume-related properties of
random polytopes, properties which are relevant in various research fields ranging
from metabolic networks, to neural networks, to compressed sensing. We propose,
as opposed to adopting the usual approach consisting in approximating the real-
valued cavity marginal distributions by a few parameters, using an algorithm
to faithfully represent the entire marginal distribution. We explain various
alternatives for implementing the algorithm and benchmarking the theoretical
findings by showing concrete applications to random polytopes. The results
obtained with our approach are found to be in very good agreement with the
estimates produced by the Hit-and-Run algorithm, known to produce uniform
sampling.
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1. Introduction

There are many problems appearing in various research fields that can be mathematically
formalized as requiring the determination of the solution set of a collection of linear
equalities or inequalities for real-valued unknown variables. More precisely, given a
rectangular M × N matrix ξ with real entries ξµi , µ = 1, . . . ,M and i = 1, . . . , N , and
given a vector γ ∈ RM , with entries γµ with µ = 1, . . . ,M , one looks for the set V of
vectors x ∈ D ⊆ RN which are solutions to e.g. a set of equalities

N∑
i=1

ξµi xi = γµ, µ = 1, . . . ,M, (1)
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or a set of inequalities

N∑
i=1

ξµi xi ≥ γµ, µ = 1, . . . ,M. (2)

A first example of a problem related to a set of equalities like (1) is that of flux-balance
analysis [1]. This is a technique designed to estimate the reaction rates of a set of chemical
reactions in the stationary state. Having in mind future applications in this area, we devote
some lines to explaining this method. Suppose we have a set of N chemical reactions that
produce and consume M chemical substances, and let us denote as cµ the concentration of
the chemical substance µ. Then we can write down the following mass-balance evolution
equations:

dcµ(t)

dt
=

N∑
i=1

ξµi xi − γµ

where xi is the reaction rate of reaction i, γµ is a flux of exchange of chemical substance
µ with the environment, and (ξ1

i , . . . , ξ
M
i ) are the stoichiometric coefficients of reaction

i. Generally, each reaction rate xi is a very complicated function of the concentrations
and kinetic parameters, i.e. xi = xi(c, kinetic coefficients, etc). Even in cases in which
all of these functional relations are known, the resulting equations are highly non-linear
and numerically hard to handle. However, if we have good reasons to assume that the
system works in the stationary state, that is dcµ(t)/dt = 0, then the reaction rate vector
x can be considered as an unknown vector for a set of equalities (1). Besides, due to
biochemical constraints, each reaction rate xi would be such that xi ∈ [xmin

i , xmax
i ], so

D =
∏N
i=1[x

min
i , xmax

i ]. Thus, in this context, estimating the volume of solutions corresponds
to estimating reaction rates of a set of chemical reactions in the stationary state. Of
course, the problem has been transformed from a potentially numerically intractable task
of solving a set of coupled non-linear differential equations to the more tractable yet very
time-consuming task of estimating the volume of solutions V of (1). Flux-balance analysis
(FBA) goes one step further and simplifies the problem by replacing the whole volume V
by one of its solutions. This is achieved by imposing an objective function which must be
optimized (see [1] for details).

One example relating to the case of inequalities (2) is von Neumann’s expanding
model for linear economies [5]–[7], which, due to its interesting applications to metabolic
networks [8]–[11], deserves a couple of lines of explanation. In the economic context in
which it was originally introduced, this model assumes that an economy is constituted
of N companies consuming and producing M commodities. Each company i is able to
operate linearly with a scale of operation xi. If A = (aµi ) and B = (bµi ) are the input and
output matrices of such an economy, as some of the input will be used to produce output
the ratio of input to output produced cannot be larger than the global growth rate ρ,
that is

ρ ≤
∑N

i=1 b
µ
i xi∑N

i=1 a
µ
i xi

or
N∑
i=1

(bµi − ρa
µ
i )xi ≥ 0, ∀µ = 1, . . . ,M. (3)
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Thus for von Neumann’s model of linear economies, one then wonders what the possible
values for the vector of operations x are for a given growth rate, and how the optimal
growth rate can be achieved.

These two examples are just a glimpse into the myriad problems, old (e.g. Gardner’s
optimal capacity problem [2]) and new (e.g. compressed sensing [3, 12]), coming from
diverse research fields which can be mathematically formalized as either (1) or (2), and
which have the same goal: find techniques, either analytic or numerical or a combination
of these, for estimating the volume of solutions V and statistical properties related to it.

Thus, rather than focusing on a research field in particular, in the present paper we
analyse the problem in general terms, and, for the sake of clarity, we present our new
methodology and test it on simple examples, leaving more complex and certainly more
exciting applications, particularly in the area of metabolic networks, for future research.

We have organized this paper as follows. In section 2 we set up the problem at hand
and present it in a unifying way. In section 3 we apply the cavity method to obtain a set of
self-consistency equations for the cavity marginals. We also discuss a set of self-consistency
equations for the support of these marginals. As we will see, the set of equations for
the supports decouples from the actual shape of the marginals, yielding an extremely
simple set of equations, which can be readily solved. Section 4 contains the first main
result, consisting in reweighting the cavity equations, in seeking for an efficient way to
solve them. In section 5 we propose two main ways for implementing the weighted cavity
equations: the method of the histograms and the weighted population dynamics in the
instance. Besides this, for the second method we suggest two alternatives: (i) random
assignment and variable locking and (ii) variable fixing. We have benchmarked all these
novel ideas with some examples and reported the results in section 6. Further theoretical
research and applications, particularly in the area of metabolic networks, are discussed in
the conclusions in the last part, section 7.

2. Model definitions

As the analytical treatments for the two problems (1) and (2) are not that different,
we choose to discuss the more general problem related to the set of inequalities (2).
We are particularly interested in heterogeneous systems in which the rectangular matrix
ξ is generally random. This can be summed up by saying quite simply that we focus
here on estimating volume-related properties of random polytopes. In the so-called
H-representation, a polytope is defined as the set of points x = (x1, . . . , xN) ∈ D =
D1×· · ·×DN ⊆ RN encapsulated by M hyperplanes {(ξµ, γµ)}Mµ=1, with ξµ = (ξµ1 , . . . , ξ

µ
N)

the normal vector of the µ-hyperplane. Its volume can formally be written as

V =

{
x ∈ D :

N∑
i=1

ξµi xi ≥ γµ, µ = 1, . . . ,M

}
.

From all possible questions related to polytopes in H-representation, we are particularly
interested in that of the volume V and its projection onto each axis, or in order words, the
single-site marginal pdf Pi(xi). These two quantities can be mathematically written as

V =

∫
D

dx
M∏
µ=1

Θ [hµ(x∂µ)] , Pi(xi) =
1

V

∫
D\i

dx\i

M∏
µ=1

Θ [hµ(x∂µ)] , (4)
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where we have defined hµ(x∂µ) =
∑

i∈∂µξ
µ
i xi−γµ, Θ(x) is the Heaviside step function, and

x\i denotes the vector x without the component xi, and D\i = D1×· · ·×Di−1×Di+1×· · ·×
DN . Notice that, in a strict mathematical sense, the volume of the polytope V defined by
equation (4) is always strictly 0, as this is the volume of an N −M -dimensional manifold
in N dimensions. This can be formally dealt with as explained in [13], but with the
definition used here this does not have an impact on the results concerning the marginal
distributions.

3. Single-site marginals, cavity equations and supports

Using the cavity method (see appendix A) it is possible to express the single-site marginals
Pi(xi) in terms of the local variables connected to them. Assuming that the bipartite graph
associated with the rectangular matrix ξ is locally tree-like, we can arrive at the following
set of cavity equations:

P
(ν)
i (xi) =

1

V
(ν)
i

∏
µ∈∂i\ν

m(i)
µ (xi), ∀ i, ν ∈ ∂i, (5)

m(i)
µ (xi) =

1

m
(i)
µ

∫
D∂µ\i

dx∂µ\i Θ
(
hµ(x∂µ\i) + ξµi xi

) ∏
`∈∂µ\i

P
(µ)
` (x`), ∀ i, µ ∈ ∂i. (6)

Here the V
(ν)
i and m(i)

µ are normalizing constants and we have labelled the variable-nodes
with italic indices, i, j, . . ., and the factor-nodes with Greek ones, µ, ν, . . .. Besides that, we
have used the following standard notation: ∂i denotes the set of factor-nodes neighbouring
i, ∂µ denotes the set of variable-nodes neighbouring the factor-node µ, and x∂µ is the set
of dynamical variables on the set of variable-nodes ∂µ. Finally, if A is a set of indices and
i ∈ A, then A \ i is the set A without the index i.

Once the set of equations (5) and (6) is solved, the actual single-site marginals are
given in terms of the marginals {m(i)

µ (xi)}:

Pi(xi) =
1

Vi

∏
µ∈∂i

m(i)
µ (xi), (7)

with Vi a normalizing constant. It is important to point out that the support of the
marginal Pi(xi) is not the integration domain for xi ∈ Di, but rather the result of
intersecting the polytope and D, the intersection then being projected onto the xi-axis.
Looking at equations (5) and (6), one notices that it is possible to write down self-
consistency equations for the support of the marginals in the cavity equations. To do

so, let us denote as R(i)
µ and K

(ν)
i the supports of the marginals m(i)

µ (xi) and P
(ν)
i (xi),

respectively. Then from equation (5) we can write that

K
(ν)
i =

⋂
µ∈∂i\ν

R(i)
µ . (8)

To be able to write down the support R(i)
µ in terms of K

(ν)
i , we notice from equation (6)

that, geometrically, we are integrating on a parallelotope S(i)
µ ⊆ D∂µ\i defined as the

Cartesian product of supports {K(µ)
` }`∈∂µ\i, that is S(i)

µ = ×`∈∂µ\iK(µ)
` . This parallelotope

has 2|∂µ\i| vertices, whose set we denote as V(i)
µ . As geometrically suggested by equation (6),

doi:10.1088/1742-5468/2012/11/P11003 5
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when xi is varied the hyperplane hµ(x∂µ\i) + ξµi xi = 0 will intersect with all these vertices.

Let us denote as I(V(i)
µ ) the set of 2|∂µ\i| values of xi at which this intersection occurs.

Then the support R(i)
µ is the maximal set such that

R(i)
µ =

[
min
x∈I
I(V(i)

µ ),max
x∈I
I(V(i)

µ )

]⋂
R(i)
µ . (9)

Notice that once the collection of supports R(i)
µ are known, then supports Ki for the

single-site marginals Pi(xi) are given by

Ki =
⋂
µ∈∂i

R(i)
µ . (10)

The set of equations (8) and (9) is decoupled from the set of the cavity equations (5) and
(6), in the sense that the actual shape of the marginals is not needed to obtain information
solely about their support. This rather simple observation is quite relevant for two reasons.
Firstly, to apply the algorithms that we devise in section 4 we need to know the support
of the marginals beforehand in order to avoid rejection. This will become clearer in the
explanation of the method, but in anticipation and with a modest amount of foresight
we note that by simply inspecting equation (8) we find that either xi lies within the
intersection of all the supports {R(i)

µ }µ∈∂i\ν or (at least) one of the m-functions is zero
for that value, and therefore the value xi should not be allowed. Secondly, as we will see
in the derivation below, the self-consistency equations for the supports are much simpler
than the corresponding equations for the marginals, meaning that they can be solved
extremely quickly. Thus, as the supports give valuable information on allowed values for
the dynamical variables, these self-consistency equations are important in their own right,
as they can be applied, for instance, to study the behaviour of metabolic networks under
perturbations (e.g. the effect of gene knockout in reaction rates) or, as we illustrate below
in section 6.2, to determine the critical line for the global growth rate in von Neumann’s
model described in equation (3).

3.1. Expressing the self-consistency equations for the supports in terms of endpoints

We now move on to implement the set of (8) and (9) to obtain each support K
(µ)
i . As

the marginals are the result of projecting a convex polytope, we expect them to be singly

supported. We then define K
(µ)
i = [k

(µ)
i,−, k

(µ)
i,+] and similarly R(i)

µ = [r
(i)
µ,−, r

(i)
µ,+]. From the

Heaviside function in equation (6) we know that hµ(x∂µ\i) + ξµi xi ≥ 0. This implies that
for an auxiliary variable zµ we can write hµ(x∂µ\i)+ξµi xi = zµ or xi = (1/ξµi )[zµ−hµ(x∂µ\i)].
If the reader finds the introduction of the variable zµ rather obscure, an alternative
interpretation will be given in section 4. Next, let us now denote as xiµ,σ∂µ\i the 2|∂µ\i|

values of xi at each of the vertices of the parallelotope S(i)
µ = ×`∈∂µ\iK(µ)

` , that is

x(i)
µ,σ∂µ\i

=
1

ξµi
y(i)
µ,σ∂µ\i

, y(i)
µ,σ∂µ\i

= zµ + γµ −
∑
`∈∂µ\i

ξµ` k
(µ)
`,σ`
.

To look for the maximum and minimum in the set of values {x(i)
µ,σ∂µ\i

}, we notice that we

do not need to check all 2|∂µ\i| values, but rather we can write down directly an expression

doi:10.1088/1742-5468/2012/11/P11003 6
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for them. Indeed, let us define first

t
(i)
µ,− = zmin + γµ −

∑
`∈∂µ\i

max{ξµ` k
(µ)
`,σ`
}σ`∈{−,+},

t
(i)
µ,+ = zmax + γµ −

∑
`∈∂µ\i

min{ξµ` k
(µ)
`,σ`
}σ`∈{−,+}

(11)

where zmin = 0 and zmax are the minimum and maximum values that the variable zµ can
take5. Then the maximum and minimum values of xi are

o
(i)
µ,+ = max{t(i)µ,σ/ξ

µ
i }σ∈{−,+}, o

(i)
µ,− = min{t(i)µ,σ/ξ

µ
i }σ∈{−,+}. (12)

From here we can have finally write

r
(i)
µ,− = max{o(i)

µ,−, r
(i)
µ,−}, r

(i)
µ,+ = min{o(i)

µ,+, r
(i)
µ,+}

k
(ν)
i,− = max{r(i)

µ,−}µ∈∂i\ν , k
(ν)
i,+ = min{r(i)

µ,+}µ∈∂i\ν .
(13)

The set of equations (11)–(13) is a set of self-consistency cavity equations for the endpoints
defining the supports of the cavity marginals. These cavity equations can be solved in the
standard manner by using belief propagation, i.e. the fixed-point iteration method, using

as a starting support K
(µ)
i = Di = [mi,−,mi,+] for all i = 1, . . . , N and for all µ ∈ ∂i. From

equation (10) and once the values of {r(i)
µ,−} have been estimated, we can calculate the

support Ki of the single-site marginals Pi(xi), namely

ki,− = max{r(i)
µ,−}µ∈∂i, ki,+ = min{r(i)

µ,+}µ∈∂i.

4. A weighted belief-propagation algorithm

Before presenting our method let us discuss briefly the various alternatives found in the
literature as regards how to estimate volume-related properties of polytopes. They can
be grouped into two main categories: (i) Monte Carlo simulations and (ii) theoretical
approaches.

By Monte Carlo simulations we generally mean numerical ways of directly sampling—
one hopes, uniformly—the volume of a polytope. The Hit-and-Run algorithm [4], explained
in appendix B, is a Monte Carlo method that uniformly samples the volume of a polytope.
This method is reasonably efficient only for small dimensions as its mixing time goes
as O(N3). The MinOver+ algorithm [14] was originally introduced for neural networks
to check whether a solution to a problem of the type (2) exists. This algorithm was
subsequently applied to sample the volume of polytopes in [7], [9]–[11]. Compared with
the Hit-and-Run algorithm, MinOver+ can deal with larger systems, yielding samples that
become more uniform as the system becomes larger.

By theoretical approaches what we mean is that one identifies the quantities of interest
and under not unreasonable assumptions one then tries to write down closed equations
for these quantities. This is what we have done here thus far (and also in [7]), by taking as
quantities of interest the single-site marginals, and finding the set of closed equations (5)
and (6) by assuming the Bethe approximation for the problem (2). For FBA, that is for

5 Since the polytope is restricted to being at most D, then zµ does indeed have a finite maximum value. For
practical purposes one simply sets a cut-off maximum value.

doi:10.1088/1742-5468/2012/11/P11003 7
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problems of the type (1), this was done in e.g. [13], while in the context of compressed
sensing, similar equations were derived in [3, 12]. Of course the problem is then how to
solve the resulting equations (e.g. the set of equations (5) and (6) in our case) in an
efficient way.

The reader should note that in the simplest possible analysis, we expect the
computational time associated with solving the cavity equations to go linearly with the
system size N (as opposed to ∼N3 for the Hit-and-Run algorithm), as this is precisely how
the number of cavity equations grows with N . Leaving this aside there are, however, more
urgent and pressing matters. Indeed, in general terms it is considered a daunting task
trying to solve the exact cavity equations by any numerical means when the dynamical
variables are continuous, as they are in our case, in the cases of [3, 12, 13] or, more
generally, for any continuous-valued spin models on diluted graphs. To overcome this
numerical burden, one first approximates the cavity equations somehow and then solves
numerically the approximated equations. This can be presented in various ways, but
the general approach is first noticing that the marginals can be parametrized using

an infinite number of parameters, that is, P
(ν)
i (xi|α(ν)

i ) and m(i)
µ (xi|β(i)

µ ) where we have

defined α
(ν)
i = (α

(ν)
i,1 , α

(ν)
i,2 , . . .) and β(i)

µ = (β
(i)
µ,1, β

(i)
µ,2, . . .). For instance, in this framework

the Gaussian approximation means choosing the parameters of the marginals to be their
cumulants and assuming that only the first two cumulants are different from zero.

However, for this type of problem consisting in counting the number of solutions of
a set of either linear equalities or inequalities, as for our case, it is possible to tackle
the cavity equations (5) and (6) without approximation. To whet the appetite for the
forthcoming discussion, let us first rewrite equation (6) as follows:

m(i)
µ (xi) =

1

m
(i)
µ

∫
R+

dzµ

∫
D∂µ\i

dx∂µ\i δ(hµ(x∂µ\i) + ξµi xi − zµ)
∏

`∈∂µ\i

P
(µ)
` (x`),

∀ i, µ ∈ ∂i (14)

where we have expressed the Theta functions in terms of a Dirac delta using the integral
identity θ(x− a) =

∫
R+ dy δ[(x− a)− y]. Note that the new integration variable zµ can be

understood as a random variable with uniform density in a subset of R+. Indeed, due to
the constraints of the problem at hand, the random variable zµ will generally take values
not on the whole positive line but rather on a compact set of it, and it will be therefore
normalizable.

Looking at the cavity equation (14) we notice that, written in this way, the Dirac
delta suggests estimating the integral expression by using the method of population
dynamics (note: population dynamics provides a clever way to estimate the integral using
a Monte Carlo method when the integrand is unknown) as in, for instance, solving the
ensemble cavity equations for discrete spin models on locally tree-like graphs. There are
two important differences, though: (i) the cavity equation (14) is still in the instance; (ii)
not all updates xi ← (zµ− hµ(x∂µ\i))/ξ

µ
i suggested by equation (14) are allowed, as there

may be integration regions such that xi 6∈ R(i)
µ and therefore the update must be rejected.

The first difference is unimportant, but the second one is not: if we do not find a way to
avoid the rejection region, the resulting population dynamics performed in the instance
will be quite inefficient.
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Fortunately, there is a way to avoid the rejection region completely. To illustrate how,
we set aside all notational complications of the cavity equations and focus on the problem
at hand with the following simpler example:

m(x) =
1

m

∫
[0,1]n

[
n∏
i=1

dyi ρi(yi)

]
δ

(
x+

n∑
i=1

aiyi − γ
)
, x ≥ 0

where the ρi(yi) for i = 1, . . . , n are some arbitrary pdfs with yi ∈ [0, 1]. We note that this
integral is zero unless x = γ −

∑n
i=1aiyi ≥ 0. Thus the effective integration region is the

one enclosed by the hypercube [0, 1]n and the hyperplane γ =
∑n

i=1aiyi. Deciding to carry
out the integration in a specific order we write

m(x) =
1

m

∫
R1(γ)

dy1 ρ1(y1)

∫
R2(y1,γ)

dy2 ρ2(y2) · · ·

×
∫
Rn(y1,...,yn−1,γ)

dyn ρn(yn)δ

(
x+

n∑
i=1

aiyi − γ
)
.

As we want to evaluate the above integral by Monte Carlo methods, we need to reweight
each density ρi on the new region Ri(y1, . . . , yi−1, γ). We write

ρi(yi|y1, . . . , yi−1, γ) =
ρi(yi)

wi(y1, . . . , yi−1, γ)
,

wi(y1, . . . , yi−1, γ) ≡
∫
Ri(y1,...,yi−1,γ)

dyi ρi(yi).

Thus the expression for m(x) becomes

m(x) =
1

m

[
n∏
i=1

∫
Ri(y1,...,yi−1,γ)

dyi ρi(yi|y1, . . . , yi−1, γ)

][
n∏
i=1

wi(y1, . . . , yi−1, γ)

]

× δ

(
x+

n∑
i=1

aiyi − γ
)
.

In this new form, the integral m(x) can be evaluated by Monte Carlo methods without
rejection. This is done as follows:

(1) draw y1 according to ρ1(y1|γ), draw y2 according to ρ2(y2|y1, γ), etc, and finally draw
yn according to ρn(yn|y1, . . . , yn−1, γ);

(2) assign x← γ −
∑n

i=1aiyi with weight Ω ≡
∏n
i=1wi(y1, . . . , yi−1, γ).

This process can be then repeated Np times to obtain a collection of pairs

{(xα,Ωα)}α=1,...,Np , from which we can reconstruct m(x) as m(x) ≈ 1/m
∑Np

α=1Ωαδ(x−xα)

with m =
∑Np

α=1Ωα. This reweighting technique avoids the rejection region, allowing us to
estimate the integrals involved much more efficiently.
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Thus, if we apply this reweighting technique to cavity equations (14), we obtain

m(i)
µ (xi) =

1

m
(i)
µ

k(i)
µ∏
j=1

∫
R(µ)
j (x`1 ,...,x`j−1

,γµ)

dx`j P
(µ)
`j

(x`j |x`1 , . . . , x`j−1
, γµ)


×
∫
R(µ)
j (x∂µ\i,γµ)

dzµ
ω(µ)(x∂µ\i, γµ)

δ
(
hµ(x∂µ\i) + ξµi xi − zµ

)

×

k(i)
µ∏
j=1

ω
(µ)
j (x`1 , . . . , x`j−1

, γµ)

ω(µ)(x∂µ\i, γ
µ), ∀ i, µ ∈ ∂i (15)

where we have used the notation k(i)
µ = |∂µ \ i| and `j ∈ ∂µ \ i for j = 1, . . . , k(i)

µ and we
have defined

P
(µ)
`j

(x`j |x`1 , . . . , x`j−1
, γµ) =

P
(µ)
`j

(x`j)

ω
(µ)
j (x`1 , . . . , x`j−1

, γµ)
,

ω
(µ)
j (x`1 , . . . , x`j−1

, γµ) =

∫
R(µ)
j (x`1 ,...,x`j−1

,γµ)

dx`j P
(µ)
`j

(x`j)

ω(µ)(x∂µ\i, γ
µ) =

∫
R(µ)
j (x∂µ\i,γµ)

dzµ = |R(µ)
j (x∂µ\i, γ

µ)|.

Although we could have chosen any order of integration for writing down equation (15),
it is convenient, as we will explain below, to integrate the variable zµ first6. We will
henceforth generally call the set of equations (15) and (5) the weighted cavity equations
and the algorithm used to solve them the weighted belief-propagation algorithm or the
weighted message-passing algorithm.

5. Implementing the weighted belief-propagation algorithm

We move on to discussing the actual implementation of the algorithm to numerically solve
the set of equations (5) and (15). As we will see shortly, although we have found a nice
method for avoiding rejection, further complications appear on the horizon which may
put into question the discussion that we have given thus far. Fortunately, we can describe
a way to overcome them.

We present here two alternative implementations: the method of histograms and the
weighted population dynamics in the instance.

5.1. The method of histograms

Ideally, to solve numerically the weighted cavity equations we would firstly represent

the marginals P
(µ)
i (xi) and m(i)

µ (xi) with populations of pairs {(w(µ)
i,α , x

(µ)
i,α )}α=1,...,Np and

{(v(µ)
i,α , x

(i)
µ,α)}α=1,...,Np , respectively, so that P

(µ)
i (xi) ≈ (1/P

(µ)
i )

∑Np
α=1w

(µ)
i,α δ(xi − x

(µ)
i,α ) and

m(i)
µ (xi) ≈ (1/m(i)

µ )
∑Np

α=1v
(i)
µ,αδ(xi − x(i)

µ,α), where P
(µ)
i and m(i)

µ are normalization factors.

6 Note that while zµ is the variable to formally be integrated first, within our Monte Carlo method, zµ is the last
variable to be estimated.
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There is a drawback though: while it is possible—and desirable—to use the population
of the P s to evaluate equation (15) updating the population for the ms, it is difficult to
see how to use this representation directly to update the population for the ms according
to equation (5). Of course, one could always construct histograms for the set of functions

{m(i)
µ (xi)}µ∈∂i/ν to calculate a histogram for P

(ν)
i (xi) according to equation (5), and then

draw a population for P
(ν)
i (xi) from its histogram. But if we need to construct histograms

at some point in the algorithm, it is actually a waste of time to go back and forth between
a representation of histograms and a representation of populations.

Thus, due to equation (5), we are unfortunately obliged to implement a weighted

message-passing algorithm where the functions P
(µ)
i (xi) and m(i)

µ (xi) are quite simply
represented by histograms. We call this implementation the method of histograms.

Discretization of the unweighted cavity equations and their Fourier transforms
constituted the method used in [12, 13] in the context of FBA and compressive sensing.
Let us see how it is possible to avoid discretization altogether.

5.2. Weighted population dynamics in the instance

Fortunately, it is possible to overcome the previous problem of having to go through
the m-functions via equation (5). To illustrate the method we again ignore all
tediousness regarding notation and analyse the following simpler example that captures
the complications arising from combining equations (5) and (15), namely, the appearance
of multiple Dirac deltas:

r(x) =
1

r

∫
[0,1]n

[
n∏
i=1

dyi ρi(yi)

]
δ

(
x+

n∑
i=1

aiyi − γ
)

×
∫

[0,1]m

[
m∏
i=1

dzi ψi(zi)

]
δ

(
x+

m∑
i=1

bizi − δ
)
,

with x ≥ 0 and where ρi(yi), i = 1, . . . , n, and ψi(zi), i = 1, . . . ,m, are some arbitrary pdfs
with yi, zi ∈ [0, 1]. As we have already discussed the problem of rejection, we first simply
reweight this equation accordingly:

r(x) =
1

r

[
n∏
i=1

∫
R(ρ)
i (y1,...,yi−1,γ)

dyi ρi(yi|y1, . . . , yi−1, γ)

]

×
[

n∏
i=1

w
(ρ)
i (y1, . . . , yi−1, γ)

]
δ

(
x+

n∑
i=1

aiyi − γ
)

×
[
m∏
i=1

∫
R(ψ)
i (z1,...,zi−1,γ)

dzi ψi(zi|z1, . . . , zi−1, δ)

]

×
[
m∏
i=1

w
(ψ)
i (z1, . . . , zi−1, δ)

]
δ

(
x+

m∑
i=1

bizi − δ
)
. (16)

As there are two Dirac deltas in the expression (16), it is natural to ask how to resolve
the issue of assignment for the variable x so that we can estimate the integrals by Monte
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Carlo methods. We describe two options: random assignment and variable locking and
variable fixing.

5.2.1. Random assignment and variable locking. In this case we use one of the Dirac
deltas to assign a value to x, locking such values in the other Dirac deltas. Suppose, for
instance, that in our example we use the first Dirac delta to assign a value to x. The first
steps of the algorithm would be almost as before:

(1) draw y1 according to ρ1(y1|γ), draw y2 according to ρ2(y2|y1, γ), etc, and finally draw
yn according to ρn(yn|y1, . . . , yn−1, γ);

(2) assign x← x? = γ −
∑n

i=1aiyi;

(3) calculate the weight Ω ≡
∏n
i=1w

(ρ)
i (y1, . . . , yi−1, γ).

In the second Dirac delta, the value of x has been locked to x?. The integration regions

will depend on x? and we denote this by writing R(ψ)
i (z1, . . . , zi−1, γ, x

?). The multiple
integration over z is then done as follows:

(1) draw z1 according to ψ1(z1|δ, x?), draw z2 according to ψ2(z2|z1, δ, x
?), etc, and finally

draw zm−1 according to ψm−1(zm−1|z1, . . . , zm−2, δ, x
?);

(2) the Dirac delta locks the value zm ← (δ− x?−
∑m−1

i=1 bizi)/bm allowing us to integrate
the last integral over zm;

(3) calculate the weight Γ ≡ ψm(zm|z1, . . . , zm−1, δ, x
?)
∏m
i=1w

(ψ)
i (z1, . . . , zi−1, δ, x

?) =

ψm(zm)
∏m−1
i=1 w

(ψ)
i (z1, . . . , zi−1, δ, x

?);

(4) assign x? an overall weight ∆ ≡ ΩΓ.

As before this process can be repeated Np times to obtain a collection of pairs

{(x?α,∆α)}α=1,...,Np , from which we can reconstruct r(x) as r(x) ≈ 1/r
∑Np

α=1∆αδ(x − x?α)

with r =
∑Np

α=1∆α.

5.2.2. Variable fixing. In this case we fix the value of x from the beginning, then evaluate
each integral according to the second part of the algorithm before. For our example at
hand the steps are:

(1) fix a value of x to x? within its support for r(x);

(2) for the integrals involving function ρ:
(a) draw y1 according to ρ1(y1|γ, x?), draw y2 according to ρ2(y2|y1, γ, x

?), etc, and
finally draw yn−1 according to ρn−1(yn−1|y1, . . . , yn−2, γ, x

?);

(b) the Dirac delta locks the value yn← (δ−x−
∑n−1

i=1 aizi)/an allowing us to integrate
the last integral over zn;

(c) calculate the weight Γρ ≡ ψn(yn|y1, . . . , yn−1, γ, x
?)
∏n
i=1w

(ρ)
i (y1, . . . , yi−1, γ, x

?) =

ρn(yn)
∏n−1
i=1 w

(ρ)
i (y1, . . . , yi−1, γ, x

?);

(3) repeat the same process for function ψ and calculate the weight Γψ;

(4) assign a weight ∆ ≡ ΓρΓψ to the fixed value x?.

This process can be repeated Np times, scanning the support of r(x) to obtain a
collection of pairs {(xα,∆α)}α=1,...,Np , from which we can reconstruct r(x) as r(x) ≈
(1/r)

∑Np
α=1∆αδ(x− xα) with r =

∑Np
α=1∆α.
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This implementation has two clear advantages with respect the previous one. The first
one is that since we are not using the Dirac delta to randomly assign a value of x, this can
be used to perform one less integration. For this reason, we have found it more convenient
to arrange the order of integration in equation (15) such that the integral over zµ is the last
one to be estimated by the algorithm, and so the contributing weight is unity. The second
advantage lies in the fact that at a fixed value of x, what we should obtain is an averaged
value of the weight. The weight is itself a random variable whose variance, even in simple
cases, can be rather large. Thus it is appropriate to refine the estimates of the weights by
replacing them by averaged values. To do this we simply calculate T estimates for each
weight {Γρ,t}t=1,...,T and {Γψ}t=1,...,T , calculate the average weights Γρ = 1/T

∑T
t=1Γρ,t and

Γψ = 1/T
∑T

t=1Γψ,t, and assign instead the weight Γρ Γψ to the fixed value x?.7

5.2.3. Implementation for our problem. Considering all the points discussed previously,
while hoping that the tedious but necessary notation that we are about to use does not
distract the reader, the core of the algorithm for the weighted population dynamics for

solving the cavity equations (5) and (15) is as follows. We assume that all supports K
(µ)
i

for each marginal P
(µ)
i (xi) are known and we represent each marginal by a population

of pairs {(w(µ)
i,α , x

(µ)
i,α )}α=1,...,Np . Then for the random assignment and variable locking the

essential steps are the following:

(1) choose a variable-node i, a factor-node ν ∈ ∂i, and a value xi ∈ K(ν)
i ;

(2) chose a factor-node µ0 ∈ ∂i/ν;

(a) draw x`1 with probability P
(µ0)
`1

(x`1 |γµ0), draw x`2 with probability

P
(µ0)
`2

(x`2|x`1 , γµ0), etc, draw x`
k
(i)
µ0

with probability P
(µ0)
`
k
(i)
µ0

(x`1|x`1 , . . . , x`
k
(i)
µ0
−1
, γµ0),

and draw a uniform random variable zµ in the segment R(µ0)
j (x∂µ0\i, γ

µ0);

(b) assign xi ← [zµ0 − hµ(x∂µ0\i)]/ξ
µ0

i ;

(c) calculate Ω(i)
µ0

= ω(µ)(x∂µ\i, γ
µ)
∏k

(i)
µ

j=1ω
(µ)
j (x`1 , . . . , x`j−1

, xi, γ
µ);

(3) for all µ ∈ ∂i/(ν ∪ µ0):

(a) draw x`1 with probability P
(µ)
`1

(x`1|xi, γµ), draw x`2 with probability

P
(µ)
`2

(x`2|x`1 , xi, γµ), etc, draw x`
k
(i)
µ

with probability P
(µ)
`
k
(i)
µ

(x`1|x`1 , . . . ,

x`
k
(i)
µ −1

, xi, γ
µ);

(b) calculate Ω(i)
µ =

∏k
(i)
µ

j=1ω
(µ)
j (x`1 , . . . , x`j−1

, xi, γ
µ);

(4) calculate Γ
(ν)
i =

∏
µ∈∂i/νΩ

(i)
µ and replace a pair of the population of the marginal

P
(ν)
i (xi) by the new pair (Γ

(ν)
i , xi).

For the second implementation, that is variable fixing, we enumerate the following
basic steps:

(1) choose a variable-node i, a factor-node ν ∈ ∂i, and a value xi ∈ K(ν)
i ;

7 Clearly, T does not have to be fixed, but is chosen so as to achieve a certain accuracy; nor does it have to be
the same for all weights.
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(2) for all µ ∈ ∂i/ν:

(a) for t = 1, . . . , T :

(i) draw x`1 with probability P
(µ)
`1

(x`1|xi, γµ), draw x`2 with probability

P
(µ)
`2

(x`2 |x`1 , xi, γµ), etc, draw x`
k
(i)
µ

with probability P
(µ)
`
k
(i)
µ

(x`1 |x`1 , . . . ,

x`
k
(i)
µ −1

, xi, γ
µ);

(ii) calculate wt =
∏k

(i)
µ

j=1ω
(µ)
j (x`1 , . . . , x`j−1

, xi, γ
µ);

(b) set Ω(i)
µ = 1

T

∑T
t=1wt;

(3) calculate Γ
(ν)
i =

∏
µ∈∂i/νΩ

(i)
µ and replace a pair of the population of the marginal

P
(ν)
i (xi) by the new pair (Γ

(ν)
i , xi).

It is important to notice here that in the last step the replacement must be done according
to how the value of xi is selected in the first place; otherwise we could generate a biased

sampling of the support K
(ν)
i , that is, if in the first step xi is chosen uniformly randomly,

or fixed, then the replacement must be done in the same manner. Besides this, instead of
replacing, other alternatives would be, for instance, increasing the populations in those
regions where the sampling is rather poor, or using a non-uniform sampling taking more
points wherever they are most needed.

6. Numerical tests

To illustrate the previously discussed results we apply them to some simple examples.

6.1. A toy example regarding supports of marginals

Consider the polyhedron described by the following set of inequalities: ξεx ≥ γ with

ξε =


−1 −1 −1

1 −ε 0

0 1 −ε
−ε 0 1

 , x =

xy
z

 , γ =


−4

1− ε
1− ε
1− ε

 . (17)

For ε = 0 the graph associated with ξε is exactly a tree, as shown in figure 1, so iteration of
the cavity equations for the support converges at one step. On the other hand, if ε 6= 0 the
graph is loopy and, depending on the value of ε, the estimates from the cavity equations
can be very bad indeed. Yet for small ε one obtains very precise results. In figure 2 we
plotted the results of iterating the cavity equations (11)–(13) for the supports. Due to
symmetry of the problem, the support and marginals are the same for the three variables
and we parametrize the support as [a, b]. We have taken a value of ε = 0.05.

It is important to notice that as the dynamical variables are continuous we have at
our disposal an ample set of transformations that we can perform on the system. This can
be used to transform a very loopy network into a more tree-like one. For instance, in this
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Figure 1. Bipartite graphs associated with the polyhedron defined in our example
(17). The left one is exactly a tree corresponding to ε = 0. The right one
corresponds to the generic loopy case of ε 6= 0.

Figure 2. Results of iterating the cavity equations (11)–(13) for the supports.
Due to the symmetry of the problem, the support and marginals are the same
for the three variables and we parametrize the support as [a, b]. We have taken
a value of ε = 0.05. The left (right) figure corresponds to the evolution of the
cavity equations for the lower endpoint a (b). The inset reports the absolute
error between the value of the endpoint at iteration t and the exact value.

very simple example we notice that we can write ξε = ηεTε with

ηε =


− 1

1− ε
− 1

1− ε
− 1

1− ε
1 0 0

0 1 0

0 0 1

 , Tε =

 1 −ε 0

0 1 −ε
−ε 0 1

 .

Then, the transformation y = Tεx takes the system into an exact tree. Of course, under
which general conditions it is possible to perform these kinds of transformations is not
clear to us just yet; nor it is clear which are the most appropriate transformations, whose
inverse transformation can be performed efficiently.
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Figure 3. Left: results for the critical line ρc(n) from MinOver+ (red) and belief
propagation for the supports (green). The details are explained in the text. Right:
plot of the minimum support size (black dotted lines) and average support size
(red solid lines) versus ρ/ρc for the ratios n = 0.5, 2.

6.2. The critical line ρ(n) in von Neumann’s model

As a second example we revisit the von Neumann model (3). We are interested in
calculating the value of the critical line ρc(n) (with n = N/M) above which it is not
possible to find more solutions to the set of inequalities [6]. To find this critical line using
the self-consistency equations for the supports, we assume that the critical line occurs
when at least one support becomes zero. Thus for a fixed value of the ratio n = N/M we
increase the value of the global growth rate ρ until at least one of the supports becomes
zero.

Numerical results for the critical line are reported in the left panel of figure 3 and
compared with the MinOver+ algorithm results. Here we have generated Poissonian graphs
both for factor-nodes and for variable-nodes. Factor-nodes have an in-degree and out-
degree average of 3. Thus the variable-nodes have the in-degree and out-degree average
equal 3/n. The sizes of the graphs have been generated as follows: for n <= 1, M = 500
and N is varied, while for n > 1, N = 500 and M is varied. The results are averaged
over 50 graphs. Although the cavity equations for the supports can cope with much larger
graphs, we keep their sizes small so as to allow comparison with the MinOver+ algorithm
results.

In the right panel of figure 3 we have plotted two possible “order parameters” that
could be used to locate the critical line ρc. These are the minimum support size ∆min and
the average support size ∆avg. It is interesting to notice that for n ≤ 1 both parameters
become zero at the critical line (as given by the MinOver+ algorithm). This implies that
at the critical line the volume of the polytope collapses to a point. Remarkably, for n ≥ 1
we have that ∆min = 0 and ∆avg > 0 at the critical line, indicating that the polytope has
collapsed in one or more dimensions, but it is still dimensionful in a subspace.

In figure 4 we also report the average running time t̄ corresponding to figure 3 for both
the belief propagation of the supports and the MinOver+ algorithm. As can be clearly
observed, belief propagation is faster than MinOver+ by an order of magnitude. Besides,
the average running time t̄ grows with n = N/M for n < 1, while it remains constant
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Figure 4. Average running time t̄ versus n for the belief propagation for the
supports and MinOver+. As we can see, the belief propagation is an order of
magnitude faster.

for n > 1. This is not surprising considering how the networks are generated (see the
description in the text above).

6.3. A toy example for weighted population dynamics in the instance

In this section we illustrate random assignment and variable locking and variable fixing in
a particular case of the example (16) discussed before. As we want to illustrate the method
for estimating the integral rather than its use for finding the marginals, we consider the
marginals here to be known Gaussian distributions gi(y;mi, σ

2
i ) ≡ gi(y) normalized on the

interval [0, 1] and with mean value mi and variance σ2
i .

r(x) =
1

r
I2(x), I(x) =

∫
[0,1]3

[
3∏
i=1

dyi gi(yi)

]
δ

(
x+

3∑
i=1

yi − 1

)

where we also assume that x ∈ [0, 1]. Although this is a pedagogical example, it may be
worth—for the sake of clarity but with the risk of being a bit repetitive—discussing it in
some detail. We describe here what the method of random assignment and variable locking
looks like in a pen-and-paper calculation. Firstly, for one of the multiple integrals I(x),
we note that due to the assignment x← 1−

∑3
i=1yi, and the fact that x, y1, y2, y3 ∈ [0, 1],

we have that from the integration region [0, 1]3 in the (y1, y2, y3)-space, the region that
actually contributes to the integral is the one below the plane y3 = 1− y1 − y2. Choosing
an order of integration we write

I(x) =

∫ 1

0

dy1 g1(y1)

∫ 1−y1

0

dy2 g2(y2|y1)

∫ 1−y1−y2

0

dy3 g3(y3|y1, y2)w2(y1)w3(y1, y2)

× δ

(
x+

3∑
i=1

yi − 1

)
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where we have also reweighted the pdfs g2 and g3 so that we have normalization in the
new integration intervals [0, 1− y1] and [0, 1− y1 − y2] respectively, with weights

w2(y1) =

∫ 1−y1

0

dy2 g(y2) = Q(y1|m2, σ
2
2), w3(y1, y2) = Q(y1 + y2|m3, σ

2
3)

where we have defined the function

Q(x|a, b) ≡ erf(a/
√

2b)− erf((−1 + a+ x)/
√

2b)

erf(a/
√

2b)− erf((−1 + a)/
√

2b)

and with g2(y2|y1) = g2(y2)/w2(y1), g2(y3|y1, y2) = g3(y3)/w3(y1, y2). Then, to estimate the
integral I(x) and assign a value of x we must implement the following steps:

(1) draw a Gaussian random variable y1 with mean m1 and variance σ2
1 in the interval

[0, 1], draw a Gaussian random variable y2 with mean m2 and variance σ2
2 in the

interval [0, 1−y1], and draw Gaussian random variable y3 with mean m3 and variance
σ2

3 in the interval [0, 1− y1 − y2];

(2) assign x the value x← x? = 1−
∑3

i=1yi;

(3) calculate the weight w2(y1)w3(y1, y2).

Now for the second I(x) in our example, the value of x is now locked at x?. After restricting
the integral to the region with non-zero value and using the Dirac delta to integrate over
z3 we can write

I(x?) =

∫ 1−x?

0

dz1 g1(z1)

∫ 1−z1−x?

0

dz2 g2(z2|z1, x
?)g3[z3(z1, z2, x

?)]w1(x
?)w2(y1, x

?)

with z3(z1, z2, x
?) = 1 − x? − z1 − z2, and with the weights with the same definition as

before. From here we see that to estimate I(x?) by Monte Carlo methods we can do the
following:

(1) draw a Gaussian random variable z1 with mean m1 and variance σ2
1 on the interval

[0, 1− x?] and draw a Gaussian random variable z2 with mean m2 and variance σ2
2 on

the interval [0, 1− x? − z1];

(2) calculate the weight g3[z3(z1, z2, x
?)]w1(x

?)w2(y1, x
?).

From here the total weight is ω = w2(y1)w3(y1, y2)g3[z3(z1, z2, x
?)]w1(x

?)w2(y1, x
?) at

x = x?. Repeating the process N times we obtain a population of pairs {(x?α, ωα)}Nα=1

from which to construct r(x).
To implement the numerics we have chosen m1 = 0, m2 = 1/2, and m3 = 1 while for

the standard deviations we have taken σ1 =
√

0.4, σ2 =
√

0.2, and σ3 =
√

0.4 and we have
reported the results in figure 5, with a more detailed explanation in its caption.

6.4. Random graphs and the comparison with the Hit-and-Run algorithm

Finally, our last example corresponds to a random network of N = 25 variable-nodes and
M = 10 factor-nodes. Although small, this size can be found in actual applications in
metabolic networks, for instance, human red blood cells [11, 15]. Here we have used the
WPDI algorithm with variable fixing with a population size of N = 103. For the averaged
weights we use a time window of T = 102 weights for the cavity marginals and T = 106

for the real marginals. Besides this, for the final marginals a population is not used due
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Figure 5. In this figure we report the results from using the weighted population
dynamics in the instance applied to the toy example reported in section 6.3. We
have taken three Gaussian distributions (left panel) with means 0, 1/2, and 1 and
variances σ2 = 0.4, 0.2, and 0.4. The centre panel corresponds to estimating r(x)
by means of the WPDI algorithm using the method of random assignment and
variable locking using population sizes of N = 7×102, 7×103, and 7×105 (top to
bottom). The right panel corresponds to WPDI using the variable fixing method
for a population of N = 8× 102 and using averaged weight sizes T = 15, 60, 300
(top to bottom). The orange solid line in the centre and right panels corresponds
to the exact result for r(x).

to the simple fact that then we need to plot them, so we construct the histogram directly
by fixing the value of x at the mid-point for each bin. Results for each marginal Pi(xi)
for i = 1, . . . , 25 are presented in figure 6 and we have compared our findings with results
obtained with the Hit-and-Run algorithm (for the implementation see appendix B). As
one can see, the agreement is excellent considering that the network is small and therefore
loopy, and our equations rely on the Bethe approximation.

7. Conclusions

As we have discussed, many problems arising from diverse research topics may be
mathematically recast as properties related to the volumes of polytopes. Methods for
estimating these properties can be roughly divided into mathematical and Monte Carlo
approaches. In both cases, the approach used may not be efficient enough for treating
polytopes of practical relevance (e.g. large metabolic networks). In this paper we have
shown that for diluted random polytopes, a novel weighted belief-propagation algorithm
can be used to calculate efficient single-site marginals. We have discussed several options
for implementing this algorithm, devoting more lines to explaining in detail the WPDI with
its two versions: random assignment and variable locking and variable fixing. Importantly,
we also pointed out that it is possible to write down self-consistency equations for the
supports of the marginals which, apart of the use in implementing WPDI efficiently, can
be employed to obtain relevant information about the system with little effort (e.g. to
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Figure 6. Results for the marginals Pi(xi) for i = 1, . . . , 25 (left to right and top
to bottom) of the WPDI algorithm with variable fixing (blue) compared with
estimates for the marginals using the Hit-and-Run algorithm (red).

estimate the ranges of reaction rates allowed by stoichiometry; to evaluate the impact of a
genetic mutation). Examples are used throughout this paper to illustrate, to support, and
to benchmark our novel theoretical findings and, hence, we have kept most of them fairly
simple. The attentive reader would have noticed that we have left some computational
issues unattended. For instance we have not discussed in detail the fact that equation (5)
is quadratic in the number of neighbours of i and how this dependence can be linearized
by adapting the nice trick given in [13]. Our main goal here is to pique the reader’s interest
with the novel ideas presented rather than discussing ways of improving the algorithmic
implementation. These issues are certainly important, but we believe that they belong in
another paper.

The work presented in this paper has several applications and extensions. First of
all we aim to apply weighted belief propagation to real metabolic networks, possibly
starting from the human red blood cell one, which has size comparable to that of the
example presented here, and extending the study to other reference metabolic networks
(e.g. E. coli). Since we are able to tackle both FBA and the von Neumann frameworks, we
may use our tools to, for instance, compare these two approaches and relate our results to
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the ones already published using these two methods. Secondly, we plan to apply weighted
belief propagation to solve a metabolic network model where the direction of the reactions
is not fixed and has to be determined by minimization of the Gibbs free energy. Finally,
we plan to see how to use the self-consistency equations for the supports to study for
instance the behaviour of metabolic networks under perturbations.
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Appendix A. Derivation of single-site marginals using the cavity method

The first step in deriving the cavity equations (5) and (6) for problem (2) is to start
by calculating the joint marginal Pµ(x∂µ) of the set of variables x∂µ connected to the
factor-node µ. By definition, this is given by

Pµ(x∂µ) =
1

V

∫
dx\∂µ

∏
ν

fν(x∂ν) =
1

V
fµ(x∂µ)

∫
dx\∂µ

∏
ν(6=µ)

fµ(x∂µ)

=
1

Vµ
fµ(x∂µ)P (µ)

µ (x∂µ),

P (µ)
µ (x∂µ) =

1

V (µ)

∫
dx\∂µ

∏
ν(6=µ)

fµ(x∂µ),

with fµ(x∂µ) = Θ[hµ(x∂µ)]. Here, P (µ)
µ (x∂µ) is the joint marginal for the variables x∂µ

in the absence of factor-node µ. If the graph is a tree or is locally tree-like, the set of
variables x∂µ in the absence of µ are mostly uncorrelated, and we can confidently write

P (µ)
µ (x∂µ) =

∏
`∈∂µP

(µ)
` (x`).

Let us move on to find an expression for the single-site marginals Pi(xi):

Pi(xi) =
1

V

∫
dx\i

∏
µ

fµ(x∂µ)

=
1

V

∫
dx\i

∏
µ∈∂i

fµ(x∂µ)
∏
µ6∈∂i

fµ(x∂µ)

=
1

V

∫
dx(∂µ3i)\i

∏
µ∈∂i

fµ(x∂µ)

∫
dx∂µ63i

∏
µ6∈∂i

fµ(x∂µ).

Here the notation x(∂µ3i)\i stands for the collection of variable-nodes which share a factor-
node with i with the exception of the node i itself. The important point to note here

is that
∫

dx∂µ63i
∏
µ6∈∂ifµ(x∂µ) ∝ P

(µ∈∂i)
µ∈∂i (x(∂µ3i)\i). As variable-node i is absent in this
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marginalization and as we are considering locally tree-like graphs, we can confidently

write P
(µ∈∂i)
µ∈∂i (x(∂µ3i)\i) =

∏
µ∈∂iP

(µ)
µ (x∂µ\i). All in all we have the following expression:

Pi(xi) =
1

Vi

∏
µ∈∂i

∫
dx∂µ\i fµ(x∂µ)P (µ)

µ (x∂µ\i).

Recalling that the joint marginals P (µ)
µ themselves factorize, we finally write

Pi(xi) =
1

Vi

∏
µ∈∂i

∫
dx∂µ\i fµ(x∂µ)

∏
j∈∂µ\i

P
(µ)
j (xj).

Closed equations for the cavity marginals P
(µ)
j (xj) can readily be written down by simply

removing one of the factor-nodes in the neighbourhood of i, that is

P
(ν)
i (xi) =

1

V
(ν)
i

∏
µ∈∂i\ν

∫
dx∂µ\i fµ(x∂µ)

∏
j∈∂µ\i

P
(µ)
j (xj).

Notice that the functions m(i)
µ (xi) that we introduced in the main text are combinations

of terms from of the first product in the preceding equation:

m(i)
µ (xi) =

1

m
(i)
µ

∫
dx∂µ\i fµ(x∂µ)

∏
j∈∂µ\i

P
(µ)
j (xj).

Appendix B. The Hit-and-Run algorithm

As we mentioned previously, the Hit-and-Run algorithm is a numerical method for
sampling directly and uniformly the volume of a polytope. This useful feature makes
it particularly attractive for treating problems such as FBA [16], but the algorithm has
the unfortunate drawback of being rather slow. Nevertheless, we find it useful in our case
as a benchmark for our message-passing algorithm.

We explain the Hit-and-Run algorithm by following the nice work in [17], simply
adapting the notation. Consider the following set of inequalities:

(ξµ)Tx ≥ γµ, µ = 1, . . . ,M

with x ∈ RN and ‖ξµ‖ = 1, ∀µ = 1, . . . ,M , the unit vectors normal to the M hyperplanes
encapsulating the polytope. Leaving aside some mathematical technicalities and simply
assuming that the polytope is properly defined, the algorithm samples the volume by
starting at a given point X inside the polytope and moving along a random direction
v . To know how far to move, one needs to calculate all the interactions between all
hyperplanes and the straight line passing through X in the v direction. Then the closest
hyperplanes would be the furthest region within the polytope that can be reached. This
procedure can be iterated randomly as follows:

Step 0. Find a point X (0) interior to the polytope. Set n = 0.

Step 1. Generate a direction vector v (n) from a uniform distribution.
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Step 2. Determine the intersections:

λµ =
(ξµ)TX (n) − γµ

(ξµ)Tv (n)
, µ = 1, . . . ,M

λ+ = min
1≤µ≤M

{λµ|λµ > 0}, λ− = max
1≤µ≤M

{λµ|λµ < 0},

where λ± allow us to determine the hyperplanes closest to X (n).

Step 3. Generate a uniform random number u ∈ [0, 1] and set

X (n+1) = X (n) +
(
λ− + u(λ+ − λ−)

)
v (n).

Step 4. Set n→ n+ 1 and go to Step 1 or stop if satisfied with the sampling.

It was proven [4, 17] that the statistics of the sequence {X (n)}∞n=0 converges to the
uniform distribution on the polytope.
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